This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Works with datasets to discover trends and insights, maintaining data accuracy. Power BI Data Engineer: Manages data pipelines, integrates data sources, and makes data available for analysis. Creates datamodels, streamlines ETL processes, and enhances Power BI performance.
While the BI analysts have skills to ask questions of already modeleddata, they often lack the coding acumen to query massive unstructured datasets in data lakes or cloud datawarehouses. The current tool is hamstringing my abilities, and I’m not able to use my full skillset.
As more and more data warehousing moves to the cloud, engineers increasingly find themselves working with AWS cloud services, EC2, EMR, RDS, and Redshift, other cloud-based datawarehouses such as Snowflake and Google BiqQuery, cloud computing services like Microsoft Azure, and data orchestration systems such as Kubernetes.
Many solutions require the use of different programming languages to perform advanced analysis such as R, Python, Javascript, just to name a few, and knowing them can significantly enhance your skillset. This could involve anything from learning SQL to buying some textbooks on datawarehouses.
This intuitive approach cuts through technical barriers, transforming even non-technical users into data-savvy decision makers. Advanced Analytics Functionality to Unveil Hidden Insights Logi Symphony allows you to perform on-the-fly datamodeling to swiftly adapt and integrate complex datasets directly within your existing applications.
We organize all of the trending information in your field so you don't have to. Join 57,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content