This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Well, what if you do care about the difference between business intelligence and dataanalytics? The most straightforward and useful difference between business intelligence and dataanalytics boils down to two factors: What direction in time are we facing; the past or the future? How Does This Work In Business?
To address these challenges, approximately 44% of companies are planning to invest in artificial intelligence (AI) to streamline their data warehousing processes and improve the accuracy of their insights. AI is a powerful tool that goes beyond traditional dataanalytics.
Transitioning to a different cloud provider or adopting a multi-cloud strategy becomes complex, as the migration process may involve rewriting queries, adapting datamodels, and addressing compatibility issues. Dimensional Modeling or Data Vault Modeling? We've got both!
A simple example of this would be that Sales holds data around which products sell fastest and trends in customer buying behavior. If they keep this data siloed, then Procurement and Finance would not know to order more units or build that capacity in future budgets.
Angles delivers self-service operational reporting built on context-rich, process-aware datamodels that were designed to answer your most pressing business questions. Angles goes beyond the basics, like procure-to-pay or order-to-cash templates. The breadth of Angles provides end-to-end process coverage for SAP ERP.
Our rich visualizations, including tabular and pivot reporting, are ideal for presenting financial and operational reporting data. Angles is a highly intuitive BI tool with easy-to-use datamodels that help you realize the promise of self-service BI.
We organize all of the trending information in your field so you don't have to. Join 57,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content