This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
52% of IT experts consider faster analytics essential to datawarehouse success. However, scaling your datawarehouse and optimizing performance becomes more difficult as data volume grows. Leveraging datawarehouse best practices can help you design, build, and manage datawarehouses more effectively.
52% of IT experts consider faster analytics essential to datawarehouse success. However, scaling your datawarehouse and optimizing performance becomes more difficult as data volume grows. Leveraging datawarehouse best practices can help you design, build, and manage datawarehouses more effectively.
52% of IT experts consider faster analytics essential to datawarehouse success. However, scaling your datawarehouse and optimizing performance becomes more difficult as data volume grows. Leveraging datawarehouse best practices can help you design, build, and manage datawarehouses more effectively.
In fact, Zippia reports that 67% of enterprise infrastructure in the US is now cloud-based. Moreover, organizations are now conducting cloud-to-cloud migrations to optimize their data stack and consolidate their data assets, with the cloudcomputing market expected to cross the $1 trillion mark by 2028.
Traditional AI combs through countless rows of data to derive patterns from it, which can be crucial in delivering insights that drive forward-thinking decision-making. And its usage is commonplace–according to Microsoft and LinkedIn’s 2024 Work Trend Index Annual Report , 75% of workers across the globe use AI in some capacity.
Cloud migration and support are top-of-mind for worldwide organizations–this year, cloudcomputing is forecast to surpass $1 trillion worldwide for the first time. Cloud-based ERPs reduce operating costs, can help automate processes, and provide finance teams with greater autonomy.
If the operating theme for finance teams in 2024 was “automate workflows and optimize costs to drive value,” then the operating theme for 2025 is shaping up to be, “stay the course.” Add in continuing geopolitical instability, and it’s easy to see why operating plans for 2025 are unlikely to look significantly different from 2024 plans.
We organize all of the trending information in your field so you don't have to. Join 57,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content